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The existence of time-delay in active power filter (APF) has a great influence on its stability and performance. Hence, this paper
deals with the problems of solving the delay margin, the maximal delay which allows the closed-loop system to retain stable, and
minimizing the performance index for a given H∞ controller. Firstly, for the given time-delay system and controller, a Lyapunov-
Krasovskii functional is used to derive a delay-dependent stability criterion. And a modified Lyapunov-Krasovskii functional is
used to obtain less conservative results. Secondly, the mathematical model of APF with time-delay is built, and the two problems
alreadymentioned can be dealt with via transforming them into one of the basic problems of linearmatrix inequality (LMI). Finally,
the relationships between the delay stability margin and some parameters have been investigated, and the performance index has
been discussed in considering time-delay. The effectiveness of the proposed method is verified by simulation studies.

1. Introduction

In recent years, electrical distribution systems have been
suffering from increasing harmonic propagation generated by
nonlinear loads. These nonlinear loads draw nonsinusoidal
currents from the utility, causing interference with the near
sensitive loads and limiting the use of the available electrical
supply. The quality of the electrical current thus becomes a
significant concern for the distributors of energy and their
customers [1].

Different mitigation solutions have been proposed and
used, involving passive filters, active power filters (APFs),
and hybrid active-passive filters. In general, APFs can be
connected in series or in parallel to the nonlinear loads.
Shunt active power filters are the most widely used solution.
Recently, much work has been done in this area. The key
research directions about APF contain topological struc-
ture, control strategy, compensation characteristics, resonant
depression, harmonic current detection method, and con-
troller design, and so on [2–5]. However, the time-delay in
APF is less mentioned, and sometimes it cannot be ignored,
even if the time-delay is very small [6]. From the point view
of stability analysis, it is important to find the maximal delay

time, defined as a delay stability margin, under which an
APF system with time-delay can retain stable. In [7], time-
delay has a great influence on the stability of APF, but the
delay stability margin has not been discussed.The time-delay
is an important issue that needs careful treatment to avoid
poor performance or even possible instability of the closed-
loop system [8]. Therefore, the issue of stability of time-
delay systems has been widely considered (see, e.g., [9–12]).
They can be divided into two classes: delay-dependent and
delay-independent. In general, the delay-dependent stability
criterion is less conservative than the delay-independent
criterion when the size of delay is small.

In this paper, we will deal with the problems of solving
the delay margin and minimizing the performance index for
a given H∞ controller. In order to obtain less conservative
results, a modified Lyapunov-Krasovskii functional is used
and a new criterion is obtained. Then the two problems
already mentioned can be dealt with. The relationships
between the delay stability margin and some parameters
have been investigated, and the performance index has been
discussed in considering time-delay.

The notations used in this paper are as follows: 𝑅𝑛
denotes the real vector space of dimension 𝑛; 𝑅𝑚×𝑛 is
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the set of all 𝑚 × 𝑛 real matrices; 𝐴𝑇 denotes the transpose
of matrix 𝐴. For symmetric matrices 𝐴 and 𝐵, the notation
𝐴 > 𝐵 (𝐴 ≥ 𝐵) means that matrix 𝐴 − 𝐵 is symmetric
and positive definite (symmetric and positive semidefinite);
𝐼 is an identity matrix of appropriate dimensions; The
notation ‖ ⋅ ‖

2
stands for the usual 𝐿

2
[0,∞) norm. For an

arbitrary matrix 𝑍 and two symmetric matrices 𝑃 and 𝑄,
the symmetric term in a symmetric matrix is denoted by ∗;
that is,

[

𝑃 𝑍

∗ 𝑄
] = [

𝑃 𝑍

𝑍
𝑇

𝑄

] . (1)

2. Two Stability Criteria

In this section, we will establish two stability criteria. The
following lemmas are useful in deriving the criteria.

Lemma 1 (see [13]). For any constant matrix 𝑍 ∈ 𝑅𝑛×𝑛, 𝑍 =
𝑍
𝑇

> 0, scalar ℎ > 0, and vector function 𝑥 : [−ℎ, 0] → 𝑅
𝑛,

such that the integration in the following is well defined; then

− ℎ∫

𝑡

𝑡−ℎ

⋅

𝑥

𝑇

(𝑠) 𝑍

⋅

𝑥 (𝑠) 𝑑𝑠

≤ [

𝑥 (𝑡)

𝑥 (𝑡 − ℎ)
]

𝑇

[

−𝑍 𝑍

𝑍 −𝑍
][

𝑥 (𝑡)

𝑥 (𝑡 − ℎ)
] .

(2)

Lemma 2 (see [14]). For the symmetric matrix

𝑆 = 𝑆
𝑇

= [

𝑆
11
𝑆
12

∗ 𝑆
22

] , 𝑆 ∈ 𝑅
𝑛×𝑛

, 𝑆
11
∈ 𝑅
𝑟×𝑟

(𝑟 < 𝑛) , (3)

the three conditions are equivalent to each other:

(1) 𝑆 < 0;
(2) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Consider the following time-invariant system with the
input delay and disturbance:

⋅

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
𝑢 (𝑡 − 𝜏) + 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(4)

∫

∞

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡 < ∞, (5)

that is,

𝑤 (𝑡) ∈ 𝐿
2
[0,∞) , (6)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝑤(𝑡) ∈ 𝑅

𝑛 is the
disturbance vector, 𝑢(𝑡) ∈ 𝑅𝑛 is the control input, 𝑧(𝑡) ∈ 𝑅𝑛 is
the controlled output, and𝐴, 𝐵

1
, and 𝐶 are constant matrices

of appropriate dimensions, 𝜏 > 0 is the constant delay, and
𝜙(𝑡) is the initial condition.

For a given H∞ controller,

𝑢 (𝑡) = 𝐾𝑥 (𝑡) , (7)

where𝐾 is the state feedback gain matrix to be given.
For the controller (7), it satisfies the following two

conditions:

(1) the closed-loop system is asymptotically stable;

(2) the closed-loop system guarantees, under zero initial
condition, ‖𝑧(𝑡)‖

2
< 𝛾‖𝑤(𝑡)‖

2
for all nonzero 𝑤(𝑡) ∈

𝐿
2
[0,∞) and some performance index constant 𝛾 >

0.

Then the system (4) with the given controller is rewritten
as

⋅

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(8)

where 𝐵 = 𝐵
1
𝐾.

We have the following result.

Proposition 3. For a given scalar 𝜏 > 0, the closed-loop system
described by (8) is asymptotically stable with H∞ performance
index 𝛾 > 0 for any given 𝜏, if there exist real symmetrical 𝑛×𝑛
matrices 𝑃 = 𝑃𝑇 > 0, 𝑄 = 𝑄𝑇 > 0, and 𝑍 = 𝑍𝑇 > 0 such that
Ω = Ω

𝑇

< 0, where 𝐴, 𝐵, and 𝐶 are constant matrices, 𝜆 = 𝛾2,
and

Ω = (

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑍 + 𝐶
𝑇

𝐶 𝑃𝐵 + 𝑍 𝑃 𝜏𝐴
𝑇

𝑍

∗ −𝑄 − 𝑍 0 𝜏𝐵
𝑇

𝑍

∗ ∗ −𝜆𝐼 𝜏𝑍

∗ ∗ ∗ −𝑍

) .

(9)

Proof. Choose a Lyapunov-Krasovskii functional candidate
as [15]

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

⋅

𝑥

𝑇

(𝑠) 𝜏𝑍

⋅

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

(10)

where 𝑥
𝑡
is defined as 𝑥

𝑡
= 𝑥(𝑡 + 𝜃), for all 𝜃 ∈ [−𝜏, 0], and

𝑃 = 𝑃
𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0, and 𝑍 = 𝑍
𝑇

> 0 are matrices
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to be chosen. Taking the derivative of 𝑉(𝑡, 𝑥
𝑡
) with respect to

𝑡along the trajectory of (8) yields

⋅

𝑉 (𝑡, 𝑥
𝑡
) = [

⋅

𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃

⋅

𝑥 (𝑡)]

+ [𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏)]

+ [𝜏
2
⋅

𝑥

𝑇

(𝑡) 𝑍

⋅

𝑥 (𝑡) − 𝜏∫

𝑡

𝑡−𝜏

⋅

𝑥

𝑇

(𝑠) 𝑍

⋅

𝑥 (𝑠) 𝑑𝑠]

= 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃𝐵𝑥 (𝑡 − 𝜏) + 𝑥
𝑇

(𝑡) 𝑃𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) 𝐵
𝑇

𝑃𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏)

+ 𝑤
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝜏
2
⋅

𝑥

𝑇

(𝑡) 𝑍

⋅

𝑥 (𝑡)

− 𝜏∫

𝑡

𝑡−𝜏

⋅

𝑥

𝑇

(𝑠) 𝑍

⋅

𝑥 (𝑠) 𝑑𝑠.

(11)

Use Lemma 1 to obtain

− 𝜏∫

𝑡

𝑡−𝜏

⋅

𝑥

𝑇

(𝑠) 𝑍

⋅

𝑥 (𝑠) 𝑑𝑠

≤ [

𝑥(𝑡)

𝑥(𝑡 − 𝜏)
]

𝑇

[

−𝑍 𝑍

𝑍 −𝑍
][

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

= −𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡 − 𝜏) 𝑍𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏) 𝑍𝑥 (𝑡 − 𝜏) .

(12)

Then, the following holds:

⋅

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑍 + 𝜏
2

𝐴
𝑇

𝑍𝐴)𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (𝑃𝐵 + 𝑍 + 𝜏
2

𝐴
𝑇

𝑍𝐵) 𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡) (𝑃 + 𝜏
2

𝐴
𝑇

𝑍)𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) (𝐵
𝑇

𝑃 + 𝑍 + 𝜏
2

𝐵
𝑇

𝑍𝐴)𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏) (−𝑄 − 𝑍 + 𝜏
2

𝐵
𝑇

𝑍𝐵) 𝑥 (𝑡 − 𝜏)

+ 𝜏
2

𝑥
𝑇

(𝑡 − 𝜏) 𝐵
𝑇

𝑍𝑤 (𝑡)

+ 𝑤
𝑇

(𝑡) (𝑃 + 𝜏
2

𝑍𝐴)𝑥 (𝑡) + 𝜏
2

𝑤
𝑇

(𝑡) 𝑍𝐵𝑥 (𝑡 − 𝜏)

+ 𝜏
2

𝑤
𝑇

(𝑡) 𝑍𝑤 (𝑡) .

(13)

Assuming zero initial condition, we have 𝑉(𝑡, 𝑥
𝑡
)|
𝑡=0
= 0.

Consider the following index:

𝐽
𝑧𝑤
≜ ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)] 𝑑𝑡. (14)

Then, for any nonzero 𝑤(𝑡) ∈ 𝐿
2
[0,∞) there holds

𝐽
𝑧𝑤
≤ ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)] 𝑑𝑡

+ 𝑉 (𝑡, 𝑥
𝑡
) |
𝑡=∞

− 𝑉 (𝑡, 𝑥
𝑡
) |
𝑡=0

= ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) + 𝑉 (𝑡, 𝑥
𝑡
)] 𝑑𝑡

≤ ∫

∞

0

Γ
𝑇

Ω
1
Γ 𝑑𝑡,

(15)

where Γ𝑇 = (𝑥𝑇(𝑡), 𝑥𝑇(𝑡 − 𝜏), 𝑤𝑇(𝑡)) and

Ω
1
=
[

[

Ψ
11

𝑃𝐵 + 𝑍 + 𝜏
2

𝐴
𝑇

𝑍𝐵 𝑃 + 𝜏
2

𝐴
𝑇

𝑍

∗ −𝑄 − 𝑍 + 𝜏
2

𝐵
𝑇

𝑍𝐵 𝜏
2

𝐵
𝑇

𝑍

∗ ∗ −𝛾
2

𝐼 + 𝜏
2

𝑍

]

]

,

Ψ
11
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑍 + 𝐶
𝑇

𝐶 + 𝜏
2

𝐴
𝑇

𝑍𝐴.

(16)

When only considering the stability of the closed-loop
system (8), we can assume the disturbance input is zero; that
is, 𝑤(𝑡) ≡ 0, and if the matrix Ω

1
is negative definite, we can

obtain
⋅

𝑉 (𝑡, 𝑥
𝑡
) < 0 and the asymptotic stability of system (8)

is established. When 𝑤(𝑡) ∈ 𝐿
2
[0,∞) and Ω

1
< 0, then we

can obtain 𝐽
𝑧𝑤
< 0, and therefore ‖𝑧(𝑡)‖

2
< 𝛾‖𝑤(𝑡)‖

2
.

We know

Ω
1
=
[

[

Ψ
11

𝑃𝐵 + 𝑍 + 𝜏
2

𝐴
𝑇

𝑍𝐵 𝑃 + 𝜏
2

𝐴
𝑇

𝑍

∗ −𝑄 − 𝑍 + 𝜏
2

𝐵
𝑇

𝑍𝐵 𝜏
2

𝐵
𝑇

𝑍

∗ ∗ −𝛾
2

𝐼 + 𝜏
2

𝑍

]

]

=
[

[

Ψ
1
𝑃𝐵 + 𝑍 𝑃

∗ −𝑄 − 𝑍 0

∗ ∗ −𝛾
2

𝐼

]

]

+
[

[

𝐴
𝑇

𝐵
𝑇

𝐼

]

]

𝜏
2

𝑍 [𝐴 𝐵 𝐼]

=
[

[

Ψ
1
𝑃𝐵 + 𝑍 𝑃

∗ −𝑄 − 𝑍 0

∗ ∗ −𝛾
2

𝐼

]

]

+
[

[

𝜏𝐴
𝑇

𝑍

𝜏𝐵
𝑇

𝑍

𝜏𝑍

]

]

(−𝑍)
−1

[𝜏𝑍𝐴 𝜏𝑍𝐵 𝜏𝑍]

=
[

[

Ψ
1
𝑃𝐵 + 𝑍 𝑃

∗ −𝑄 − 𝑍 0

∗ ∗ −𝛾
2

𝐼

]

]

− Ψ
12
(−𝑍)
−1

Ψ
𝑇

12
,

(17)

where 𝑍 = 𝑍𝑇 > 0, Ψ
1
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑍 + 𝐶
𝑇

𝐶, Ψ𝑇
12
=

[𝜏𝑍𝐴 𝜏𝑍𝐵 𝜏𝑍]

Ψ
1
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 − 𝑍 + 𝐶
𝑇

𝐶,

Ψ
𝑇

12
= [𝜏𝑍𝐴 𝜏𝑍𝐵 𝜏𝑍] .

(18)

From the Schur complement (Lemma 2),Ω
1
< 0 is equivalent

to Ω < 0. This completes the proof.

Proposition 4. For a given scalar 𝜏 > 0, the closed-loop system
described by (8) is asymptotically stable with H∞ performance
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index 𝛾 > 0 for any given 𝜏, if there exist real symmetrical 𝑛×𝑛
matrices 𝑃 = 𝑃𝑇 > 0,𝑄 = 𝑄𝑇 > 0,𝑍 = 𝑍𝑇 > 0,𝑊 = 𝑊

𝑇

≥ 0,
𝑆
11
= 𝑆
𝑇

11
, and 𝑆

22
= 𝑆
𝑇

22
such that

𝑆 = (

𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

) ≥ 0, (19)

Φ = Φ
𝑇

< 0, (20)

where

Φ =

(

(

(

(

(

(

(

(

(

(

(

(

Φ
11
Φ
12
𝑃𝐵 + 𝑍 𝑃

𝜏

2

𝐴
𝑇

𝑊 𝜏𝐴
𝑇

𝑍

∗ Φ
22

−𝑆
12

0 0 0

∗ ∗ Φ
33

0

𝜏

2

𝐵
𝑇

𝑊 𝜏𝐵
𝑇

𝑍

∗ ∗ ∗ −𝜆𝐼

𝜏

2

𝑊 𝜏𝑍

∗ ∗ ∗ ∗ −𝑊 0

∗ ∗ ∗ ∗ ∗ −𝑍

)

)

)

)

)

)

)

)

)

)

)

)

,

Φ
11
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝑄 + 𝑆
11
−𝑊 − 𝑍 + 𝐶

𝑇

𝐶,

Φ
12
= 𝑊 + 𝑆

12
, Φ

22
= 𝑆
22
− 𝑆
11
−𝑊,

Φ
33
= − 𝑆
22
− 𝑄 − 𝑍, 𝜆 = 𝛾

2

.

(21)

Proof. Choose a new Lyapunov-Krasovskii functional candi-
date as follows [16]:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

⋅

𝑥

𝑇

(𝑠) 𝜏𝑍

⋅

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

𝑡

𝑡−(𝜏/2)

𝑦
𝑇

(𝑠) 𝑆𝑦 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏/2

∫

𝑡

𝑡+𝜃

⋅

𝑥

𝑇

(𝑠)

𝜏

2

𝑊

⋅

𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

(22)

where 𝑥
𝑡
is defined as 𝑥

𝑡
= 𝑥(𝑡 + 𝜃), for all 𝜃 ∈ [−𝜏, 0], and

𝑃 = 𝑃
𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0, 𝑍 = 𝑍
𝑇

> 0,

𝑊 = 𝑊
𝑇

≥ 0,

𝑆 = 𝑆
𝑇

= (

𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

) ≥ 0,

𝑦
𝑇

(𝑠) = (𝑥
𝑇

(𝑠) 𝑥
𝑇

(𝑠 −

𝜏

2

)) .

(23)

The later proof is omitted due to the fact that it ismuch similar
to the proof of Proposition 3.

Remark 5. If we only consider the stability of the closed-
loop system (8), we can ignore the performance index 𝛾. In

Nonlinear 
load

Inverter

o

𝑒𝑎

𝑒𝑏

𝑒𝑐

𝑖𝑠𝑎

𝑖𝑠𝑏

𝑖𝑠𝑐

𝑖𝐿𝑎

𝑖𝐿𝑏

𝑖𝐿𝑐

𝑅
𝐿

𝑖𝐹𝑎

𝑖𝐹𝑏

𝑖𝐹𝑐

Figure 1: Circuit configuration of shunt active power filter.

Nonlinear 
load𝑒𝑎

𝑖𝑠𝑎 𝑖𝐿𝑎

𝑅

𝐿

𝑖𝐹𝑎

𝑢𝐹𝑎

Figure 2: Equivalent circuit topology of the A phase.

other words, the performance index 𝛾 can be considered as a
variable, not a given constant in the two propositions.

Remark 6. The choice of the Lyapunov-Krasovskii functional
is very important to the conservation of the derived results.
When we uniformly divide the delay interval [−𝜏, 0] into
two subintervals [−𝜏, −𝜏/2] and [−𝜏/2, 0], we obtain the new
functional in Proposition 4. Similarly, if we uniformly divide
the delay interval [−𝜏, 0] into 𝑁 subintervals and 𝑁 is a
positive integer, the derived result has less conservation for
a bigger 𝑁 by using the obtained functional. However, as 𝑁
increases, testing the result ismuch time consuming. One can
employ the result in the case of𝑁 = 2 (Proposition 4) for the
tradeoff between better results and time consuming ones [16].

3. Mathematical Model of
APF with Time-Delay

The circuit configuration of shunt active power filter con-
sisting of a filter inductor in series with PWM inverter is
shown in Figure 1. Assume the three-phase source voltage
is symmetrical and the equivalent circuit topology of the
single phase is shown in Figure 2. Source voltage, source
current, load current, filter side current, and the output
voltage of inverter are represented by 𝑒

𝑎
, 𝑖
𝑆𝑎
, 𝑖
𝐿𝑎
, 𝑖
𝐹𝑎
, and 𝑢

𝐹𝑎
,

respectively.
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Basic equation of this circuit is derived by Kirchhoff ’s
voltage law:

𝐿

⋅

𝑖
𝐹𝑎
= 𝑒
𝑎
− 𝑅𝑖
𝐹𝑎
− 𝑢
𝐹𝑎
. (24)

And the equations of the other two phases are similar.
When the control delay is considered and 𝜏 stands for the

total delay, then

𝐿

⋅

𝑖
𝐹𝑎𝑏𝑐

(𝑡) = 𝑒
𝑎𝑏𝑐
(𝑡) − 𝑅𝑖

𝐹𝑎𝑏𝑐
(𝑡) − 𝑢

𝐹𝑎𝑏𝑐
(𝑡 − 𝜏) , (25)

where

𝑖
𝐹𝑎𝑏𝑐

= (𝑖
𝐹𝑎
, 𝑖
𝐹𝑏
, 𝑖
𝐹𝑐
)
𝑇

,

𝑒
𝑎𝑏𝑐
= (𝑒
𝑎
, 𝑒
𝑏
, 𝑒
𝑐
)
𝑇

,

𝑢
𝐹𝑎𝑏𝑐

= (𝑢
𝐹𝑎
, 𝑢
𝐹𝑏
, 𝑢
𝐹𝑐
)
𝑇

.

(26)

UsingPark’s transformation to (19), the three-phase quan-
tities are transformed into a synchronous rotating reference
frame. The general transformation matrix is

𝐶
𝑎𝑏𝑐→𝑑𝑞

(𝑡)

= √
2

3

[

[

[

[

cos𝜔𝑡 cos(𝜔𝑡 − 2
3

𝜋) cos(𝜔𝑡 + 2
3

𝜋)

sin𝜔𝑡 sin(𝜔𝑡 − 2
3

𝜋) sin(𝜔𝑡 + 2
3

𝜋)

]

]

]

]

(27)

and 𝐶
𝑑𝑞→𝑎𝑏𝑐

(𝑡) = 𝐶
𝑇

𝑎𝑏𝑐→𝑑𝑞
(𝑡).

Then we obtain the transformed model in the syn-
chronous orthogonal rotating frame as follows:

[

⋅

𝑖
𝐹𝑑

⋅

𝑖
𝐹𝑞

] = 𝐴[

𝑖
𝐹𝑑

𝑖
𝐹𝑞

] + 𝐵 (𝜏) [

𝑢
𝐹𝑑
(𝑡 − 𝜏)

𝑢
𝐹𝑞
(𝑡 − 𝜏)

] + [

𝑒
𝑑

𝑒
𝑞

] , (28)

where

𝐴 =
[

[

[

−

𝑅

𝐿

−𝜔

𝜔 −

𝑅

𝐿

]

]

]

,

𝐵 (𝜏) = −

1

𝐿

[

cos𝜔𝜏 − sin𝜔𝜏
sin𝜔𝜏 cos𝜔𝜏 ] .

(29)

Note that 𝑖
𝐹𝑑
= 𝑖
𝐹𝑓𝑑
+ 𝑖
𝐹ℎ𝑑

, 𝑖
𝐹𝑞
= 𝑖
𝐹𝑓𝑞
+ 𝑖
𝐹ℎ𝑞

; then

[

⋅

𝑖
𝐹𝑓𝑑
+

⋅

𝑖
𝐹ℎ𝑑

⋅

𝑖
𝐹𝑓𝑞
+

⋅

𝑖
𝐹ℎ𝑞

] = 𝐴[

𝑖
𝐹𝑓𝑑
+ 𝑖
𝐹ℎ𝑑

𝑖
𝐹𝑓𝑞
+ 𝑖
𝐹ℎ𝑞

]

+ 𝐵 (𝜏) [

𝑢
𝐹𝑓𝑑
(𝑡 − 𝜏) + 𝑢

𝐹ℎ𝑑
(𝑡 − 𝜏)

𝑢
𝐹𝑓𝑞
(𝑡 − 𝜏) + 𝑢

𝐹ℎ𝑞
(𝑡 − 𝜏)

] + [

𝑒
𝑑

𝑒
𝑞

] ,

(30)

where the fundamental frequency component of filter current
in the synchronous orthogonal rotating frame and the rele-
vant harmonic component are represented by 𝑖

𝐹𝑓𝑑
, 𝑖
𝐹𝑓𝑞

, 𝑖
𝐹ℎ𝑑

,
and 𝑖
𝐹ℎ𝑞

respectively. The other variables are similar.

Here the output voltage function of inverter is chosen as
[4]

𝑢
𝐹
= 𝐾𝑖
𝑆ℎ
+ 𝑒, (31)

where𝐾 > 0.
The system (30) is a linear system, so it satisfies superpo-

sition principle:The last equation can be rewritten as follows.
(1) Only consider the fundamental frequency component,

𝑢
𝐹𝑓
= 𝑒,

[𝑢
𝐹𝑓𝑑

𝑢
𝐹𝑓𝑞
] = [𝑒

𝑑
𝑒
𝑞
] = [𝐸 0] ,

[

⋅

𝑖
𝐹𝑓𝑑

⋅

𝑖
𝐹𝑓𝑞

] = 𝐴[

𝑖
𝐹𝑓𝑑

𝑖
𝐹𝑓𝑞

] + 𝐵 (𝜏) [

𝑢
𝑓𝑑
(𝑡 − 𝜏)

𝑢
𝑓𝑞
(𝑡 − 𝜏)

] +

1

𝐿

[

𝑒
𝑑

𝑒
𝑞

] .

(32)

The last equation above can be rewritten as

0 = 𝐴[

𝑖
𝐹𝑓𝑑

𝑖
𝐹𝑓𝑞

] + 𝐵 (𝜏) [

𝐸

0
] +

1

𝐿

[

𝐸

0
] . (33)

This implies

[

𝑖
𝐹𝑓𝑑

𝑖
𝐹𝑓𝑞

] =

𝐸𝐿

𝑅
2
+ 𝜔
2
𝐿
2

[

[

[

𝑅

𝐿

−𝜔

𝜔

𝑅

𝐿

]

]

]

[

1 − cos𝜔𝜏
− sin𝜔𝜏 ] . (34)

In other words, the fundamental frequency component of
filter current exists because of the time-delay.

(2) Only consider the harmonic frequency component.

[

⋅

𝑖
𝐹ℎ𝑑

⋅

𝑖
𝐹ℎ𝑞

] = 𝐴[

𝑖
𝐹ℎ𝑑

𝑖
𝐹ℎ𝑞

] + 𝐵 (𝜏) [

𝑢
ℎ𝑑
(𝑡 − 𝜏)

𝑢
ℎ𝑞
(𝑡 − 𝜏)

] . (35)

The equilibrium point is as follows:

[𝑖
∗

𝐹ℎ𝑑
𝑖
∗

𝐹ℎ𝑞
]

𝑇

= [−𝑖
𝐿ℎ𝑑

− 𝑖
𝐿ℎ𝑞
]

𝑇

. (36)

The error model is obtained:

[

⋅

𝑖
𝑆ℎ𝑑

⋅

𝑖
𝑆ℎ𝑞

] = 𝐴[

𝑖
𝑆ℎ𝑑

𝑖
𝑆ℎ𝑞

] + 𝐵 (𝜏) [

𝑢
ℎ𝑑
(𝑡 − 𝜏)

𝑢
ℎ𝑞
(𝑡 − 𝜏)

] + 𝑤 (𝑡) , (37)

where

𝑤 (𝑡) = [

⋅

𝑖
𝐿ℎ𝑑

⋅

𝑖
𝐿ℎ𝑑

] − 𝐴[

𝑖
𝐿ℎ𝑑

𝑖
𝐿ℎ𝑞

] ,

𝑢
𝐹ℎ
= 𝐾𝑖
𝑆ℎ
.

(38)

Then (37) is rewritten as
⋅

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵 (𝜏)𝐾𝑥 (𝑡 − 𝜏) + 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

(39)

where the state variable 𝑥(𝑡) = (𝑖
𝑆ℎ𝑑

𝑖
𝑆ℎ𝑞
)
𝑇 and 𝑧(𝑡) is the

controlled output.Matrix𝐴, 𝐵(𝜏), and𝑤(𝑡) are defined in (29)
and (38),𝐶 = diag((𝐾

0
+𝑅)/𝐿, (𝐾

0
+𝑅)/𝐿) because of the big

disturbance 𝑤(𝑡), and𝐾
0
is a given constant.

Then the two problems above can be dealt with by
converting them into the following optimization problems.
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Problem 1. If we only consider the stability of the APF system,
delay stability margin can be solved as follows:

maximize 𝜏

subject to Ω < 0 (Φ < 0 for Proposition 4) ,

𝑃 = 𝑃
𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0,

𝑍 = 𝑍
𝑇

> 0, 𝜆 = 𝛾
2

> 0,

(𝑆 = 𝑆
𝑇

≥ 0, 𝑊 = 𝑊
𝑇

≥ 0 for Proposition 4) .
(40)

Problem 2. For the given controller and time-delay 𝜏, the
relationship between the time-delay and the controller per-
formance can be described by the performance index 𝛾 > 0
as follows:

minimize 𝜆 = 𝛾
2

subject to Ω < 0 (Φ < 0 for Proposition 4) ,

𝑃 = 𝑃
𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0,

𝑍 = 𝑍
𝑇

> 0, 𝜆 = 𝛾
2

> 0

(𝑆 = 𝑆
𝑇

≥ 0, 𝑊 = 𝑊
𝑇

≥ 0 for Proposition 4) .
(41)

These convex optimization problems can be transformed
into one of the basic problems of linear matrix inequality
(LMI) and solved by using feasp function.

4. Simulation Analysis

In this section, the two problems already mentioned will be
discussed separately, and the MATLAB software is used as
the simulation and calculation software. We assume that the
three-phase source voltages are symmetrical. A typical three-
phase rectifier is adopted as the nonlinear loads. In the filter
side, 𝑅 = 0.2Ω, 𝐿 = 7.5mH, 𝐾 = 100, and 𝑓 = 50HZ; then
𝑤 = 2𝜋𝑓 and𝐾

0
= 100.

Figure 3 shows the simulation results of source current
and its harmonic component when 𝐾 = 100, and Figure 4
shows the simulation results when 𝐾 = 50, under the
circumstance of not taking the delay into account. From the
comparison of Figures 3 and 4, we know that if the time-delay
is omitted, the value of 𝐾 is bigger, the harmonic current is
smaller, and the filtering action is better.

4.1. The Analysis of Delay Stability Margin. Firstly, we only
consider the stability by using the method in Problem 1
and then analysing the relationship between delay stability
margin and some parameters.

4.1.1.TheAlgorithm of Solving Delay StabilityMargin. For any
𝜏 we can compute the result whether the subject conditions
are satisfied, the maximum 𝜏 is what we need.

0.35 0.4 0.45

𝑖 𝑠
/𝐴

150

−150

0

𝑡 (s)

(a)

0.35 0.4 0.45

𝑖 𝑠
ℎ

/𝐴

50

−50

0

𝑡 (s)

(b)

Figure 3: 𝐾 = 100.

0.35 0.4 0.45

𝑖 𝑠
/𝐴

150

−150

0

𝑡 (s)

(a)

0.35 0.4 0.45

𝑖 𝑠
ℎ

/𝐴

50

−50

0

𝑡 (s)

(b)

Figure 4: 𝐾 = 50.

The basic steps are described as follows:

(1) choose a computed precision 𝜀 and assign it to 𝜏 as its
initial value;

(2) check whether the LMIs are true. If true, jump to step
(3); else stop;

(3) if 𝜏
𝑎
= 𝜏, 𝜏
𝑏
= 2𝜏, then 𝜏 gets its new value of 𝜏

𝑏
. Check

the LMIs again until the result is false;

(4) assign the value of (𝜏
𝑎
+𝜏
𝑏
)/2 to 𝜏 and check the LMIs.

if it is true, 𝜏
𝑎
= 𝜏; else 𝜏

𝑏
= 𝜏 until (𝜏

𝑏
− 𝜏
𝑎
)/2 ≤ 𝜀;

(5) here if the value of 𝜏
𝑎
is the delay stabilitymargin, then

stop.
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Table 1: The computed value of the delay stability (𝐾 = 100, 𝐿 =
7.5mH).

𝜏max/𝜇s
Proposition 3 105.43
Proposition 4 114.73

Table 2: The calculated value and fitted value for different values of
𝐾, (𝐿 = 7.5mH)

𝜏max/𝜇s 𝐾 = 20 𝐾 = 60 𝐾 = 100 𝐾 = 140 𝐾 = 180

Calculated value 571.46 191.12 114.73 81.961 63.751
Fitted value 574.00 191.33 114.80 82.000 63.778

Taking the above example, for example, and 𝜀 = 10(−8),
the delay stability margin is obtained by employing Proposi-
tions 3 and 4. The results are listed in Table 1.

Results in Table 1 show that the delay stability margin
calculated by Proposition 4 is bigger (114.73/105.43 ≈ 1.0882).
In other word, the derived result by Proposition 4 is less
conservative.

Then, the relationships between the delay stabilitymargin
and some other parameters will be investigated.

4.1.2. Delay Stability Margin with Parameter Variation.
Firstly, 𝐿 = 7.5mH is fixed, the value of 𝐾 is increasing from
10 to 200 steadily, and the interval is 10.The results are shown
in Figure 5 and Table 2 by using Proposition 4. When the
other parameters are invariant and the value of 𝐾 is bigger,
the filter action is better. However, the delay stability margin
is smaller and is in approximate inverse proportion with 𝐾,
so we can employ the fitted curve with an inverse proportion
functional. The result is

𝜏max =
0.01148

𝐾

, (if 𝐿 = 7.5mH) . (42)

The fitted values of some points are listed in Table 2. A
good fit is obtained, with the mean deviation between the
calculated and fitted values being less than 1%.

Secondly, 𝐾 = 100 is fixed, the value of 𝐿 is increasing
from 0.75mH to 15mH steadily, and the interval is 0.75mH.
Figure 6 shows the results.When the value of filter inductance
is increasing, the delay stability margin is changing in
approximate proportion, so there is a proportion functional
to fit the calculated values. The result is

𝜏max = 0.01529 ∗ 𝐿, (if 𝐾 = 100) . (43)

The fitted values of some points are listed in Table 3.
A good linear fit is also obtained, with the mean deviation
between the calculated and fitted values being less than 1%.

Finally, the value of𝐾 is increasing from 10 to 200 steadily
and the interval is 10; at the same time, the value of 𝐿 is
increasing from 0.75mH to 15mH steadily and the interval
is 0.75mH. The number of the group (𝐾, 𝐿) is 400. Noting
(42) and (43), the estimated curve between the delay stability
and the group (𝐾, 𝐿) is obtained as follows:

𝜏max = 𝛼 ∗
𝐿

𝐾

, (44)
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Figure 5: The relationship between the delay stability and 𝐾 (𝐿 =
7.5mH).
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Figure 6: The relationship between the delay stability and 𝐿 (𝐾 =

100).

where the value of 𝛼 is 1.5298 for Proposition 4 and 1.4057 for
Proposition 3.

Taking the calculated and estimated values by using
Proposition 4; for example, there are ten typical groups listed
in Table 4, where (𝑎, 𝑏) stands for the group (𝑎 ∗ 𝐾0, 𝑏 ∗ 𝐿0),
and 𝐾0 = 10, 𝐿0 = 0.75mH. The estimated values are very
close to the calculated values, and themean deviation of them
is less than 1%.

4.2. The Relationship between the Time-Delay and the Con-
troller Performance. The relationship can be described by
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Table 3: The calculated value and fitted value for different values of
𝐿, (𝐾 = 100, 𝐿0 = 0.75mH).

𝜏max/𝜇s 𝐿 = 2 ∗ 𝐿0 6 ∗ 𝐿0 10 ∗ 𝐿0 14 ∗ 𝐿0 18 ∗ 𝐿0

Calculated value 22.984 68.893 114.73 160.49 206.19
Fitted value 22.935 68.805 114.68 160.55 206.42

Table 4: The calculated value and estimated value for different
groups (𝐾, 𝐿).

𝜏max/𝜇s (6, 2) (6, 6) (6, 10) (6, 14) (10, 6)
Calculated value 38.320 114.82 191.12 267.22 68.893
Estimated value 38.245 114.735 191.225 267.715 68.841
Relative error 0.20% 0.074% 0.055% 0.19% 0.075%
𝜏max/𝜇s (10, 14) (14, 6) (14, 10) (14, 14) (14, 18)
Calculated value 160.490 49.207 81.961 114.68 147.38
Estimated value 160.629 49.172 81.9536 114.82 147.516
Relative error 0.087% 0.071% 0.01% 0.12% 0.093%

the performance index 𝛾, and the derived method has been
showen in Problem 2. Similar to the procedure of the delay
stabilitymargin, we define 𝜂 = 1/𝜆 = 1/𝛾2 thenwe can obtain
the minimum performance index 𝛾 by maximizing the scalar
𝜂 in the given time-delay and controller.

We consider the three kinds of case: without time-delay,
a smaller time-delay and a bigger time-delay, that is, 𝜏 = 0 𝜇s,
𝜏 = 20 𝜇s, and 𝜏 = 80 𝜇s. The results are shown in Figure 7
by using Proposition 4 because of the less conservatism, and
𝐾 is increasing from 10 to 140 steadily and the interval is 10
for each given time-delay. Similarly, we choose three different
gains 𝐾 to describe the relationship between the time-delay
and the performance in Figure 8.

It can be seen from Figure 7 that when there is no time-
delay on input; that is, 𝜏 = 0 𝜇s, the performance is better as
the increase of 𝐾. The result is similar to the smaller time-
delay. However, when the given time-delay is near to delay
stability margin, in other words, the time-delay is bigger, the
performance is worse than the middle value of𝐾, so a bigger
gain is not necessary for a serious time-delay. From Figure 8
we can obtain the similar results. Besides, it is observed clearly
that the performance isworse as the increase of the time-delay
for all gains and the influence for a small gain is less than the
one for a big gain.

5. Conclusion

This paper has investigated the delay-dependent stability of
APF and the influence on the performance in considering
time-delay. After preliminary analysis of the relationships
between the delay stability margin and some other param-
eters, the result can be estimated by (44) and the estimated
values show good agreement with the calculated values. How
to obtain a bigger value of𝛼 in (44)will be further considered.
The delay stability margin can be used as a design objective to
guide the selection of different parameters. The time-delay is
common in practical applications, and it cannot be predicted
100 percent true, so it is necessary to research the influence.
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Figure 7:The relationship between the gain𝐾 and the performance.
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When the actual time-delay is small, a bigger gain can be
chosen to get a good performance. Otherwise, a middle gain
can be chosen for a bigger time-delay.
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